New Corn Planting Strategies

Manni Singh & Dan Quinn

Cropping Systems Agronomist (MSU) & Corn Agronomist (Purdue)

Feb 3, 2025, MSUE Webinar

Cropping Systems Agronomy MICHIGAN STATE UNIVERSITY

Corn Agronomy

Topics for today

- Recent weather trends
- Corn yield and its components
- >Importance of **planting time**
- >Influence of planting date on corn hybrid maturity
- Short corn hybrids (& potential of narrow rows)
- Seeding rate responses in corn

Weather Trends

> (Relatively) short growing season

is <u>expanding over time</u>, earlier spring frost and later fall frost

- More rainfall (during the time of field operations)
 - > Wet spring, leading to planting challenges
 - Wet fall, leading to harvest issues (and corn dry down)

Yield formation in Corn

- Develop uniform and healthy crop canopy (Source) for max light capture
 - Knowledge of crop growth and development
 - Identify <u>field-specific yield limiting factors</u>
 - Make sound <u>agronomic decisions</u> to minimize them
- > Optimize components of grain yield (Sink)
 - Know what they are and when determined, and limit stress in that period
 - Lost yield potential can not be recovered later in season

How does planting date influence corn (vs soybean) yield?

Planting Time Impacts Crop Yield in Michigan

Data from 2018-2024 across multiple trials. Each data point is average of ≥16 plots.

Planting Time Impacts Crop Yield in Michigan

Data from 2018-2024 across multiple trials. Each data point is average of ≥16 plots.

Indiana: Corn vs. Soybean

CFAES

How does planting date influence corn hybrid maturity selection

Corn: Hybrid Maturity Selection

Corn: Hybrid Maturity Selection vs Planting Date

Data from Lansing, MI Pooled across 2021, 2022, 2023 34,000 seeds/ac; 30" rows

Late maturity hybrids for early-season planting

> Portfolio approach (~10 RM apart) in maturity selection, accounting for planting time

Corn: Useful 2 Usable Tool (U2U)

https://mygeohub.org/gr oups/u2u/purdue_gdd

Potential of Short corn hybrids? (& interaction with row spacing, seeding rate)

Short Corn

A novel genetic platform > More resilient to extreme weather Improve on-farm yield and profits Potential benefits: Lodging resistance > Tolerance to higher plant populations Easier in-season access for ➢ Pesticide applications \succ Fertilizer applications

More response to higher seeding rates or narrow row spacings?

🐔 MICHIGAN STATE UNIVERSITY

Narrow-row production system

- Yield impacts of narrow rows (& seeding rates) have been inconsistent
- Short-stature hybrids might benefit more from narrow rows, especially under northern environments
- Potential for multi-crop narrow row equipments in Michigan
- Optimal seeding rate might also be higher under narrow rows

Corn Seed Distributions

Precision Planter 30" Row Spacing, 34k s/a Precision Planter 15" Row Spacing, 34k s/a

6.1" seed spacing

12.3" seed spacing (8.4" in 22" rows) 10.0" seed spacing (6.8" in 22" rows)

Comparing Row Spacings (Short corn hybrids) 30" row spacing 22" row spacing 15" row spacing

K MICHIGAN STATE UNIVERSITY

Yield (Michigan, 2024):

> No yield difference between short and tall hybrids

> Narrow rows showed yield improvement (varied by field)

30 inch rows at V10

20 inch rows at V10

Short-Stature Corn Yield Response to Row Spacing

Location	Row Spacing	Yield	
	in	bu/ac	
West Lafayette, IN	20	275.1 a*	
	30	276.5 a	
Wanatah, IN	20	268.3 a	
	30	249.0 b	

* Average corn grain yield values that contain the same corresponding letter and are within the same location are not statistically different from each other (P > 0.1).

P

Interaction between corn seeding rate and row spacing (West Lafayette, IN)

% Stand

93%

94%

91%

95%

87%

82%

Est.

Interaction between corn seeding rate and row spacing (Wanatah, IN)

	Spacing		ESL.
Corn Seeding Rate (seeds/ac)	20"	34K	94%
		42K	94%
		50K	92%
42000	30"	34K	96%
50000		42K	93%
		50K	84%

Row

C

Seed Rate

* Average yield box plots that contain the same corresponding letter and are within each row spacing are not statistically different from each other (P > 0.1).

% Stand

Est.

Short-stature corn yield, ear height, and plant height response to hybrid type. West Lafayette, IN 2023

Hybrid	Yield	Ear Height (measured from shank attachment)	Plant Height (R3 growth stage)
	bu/ac	inches	inches
RT6203TVXZ ⁺	294.1 a*	22.4 a	67.3 a
RV6205TVXZ	280.7 b	21.1 b	65.1 b
RW5419KTFZ	252.5 c	18.7 c	65.0 b

* Average corn grain yield and height values that contain the same corresponding letter and are within the same column are not statistically different from each other (P > 0.1).

Short-stature corn yield, ear height, and plant height response to hybrid type. Wanatah, IN 2023

Hybrid	Yield	Ear Height (measured from shank attachment)	Plant Height (R3 growth stage)
	bu/ac	inches	inches
RT6203TVXZ ⁺	258.1 b*	29.4 ab	66.7 c
RV6205TVXZ	251.5 b	31.4 a	80.1 a
RW5419KTFZ	266.1 a	27.3 b	72.5 b

* Average corn grain yield and height values that contain the same corresponding letter and are within the same column are not statistically different from each other (P > 0.1).

Preliminary Conclusions (Hybrid x Row Spacing x Seed Rate)

- Short-stature hybrids have higher optimum seeding rates and yield potential in narrow rows
- Ear Height is KEY
 - Hybrid selection
 - Environment
 - Management practices

How much seed is too much?

Corn Seeding Rate

- Based on <u>Yield Environment of Field</u>:
 - Low Yield Environments
 - < 30k plants/ac</p>
 - Medium Yield Environments
 - ~30k plants/ac
 - High Yield Environments
 - 32-34k plants/ac
 - Very High Yield Environments
 - > 34k plants/ac
- Target Plant Stand vs Seeding rate (5-10% extra seed). Max yield vs profit?

Historic State Yield Averages – Indiana (1866 – 2024)

Historic Harvest Plant Population Averages – Indiana (1982 – 2024)

Indiana – 1.8 bu/ac/yr since 1956

Minimal plant population changes from 2013 – 2024 (~-22 plants/ac/yr, R² of 0.01)

Do hybrids today require higher plant populations?

- Yes, *but....*
- Current corn hybrids respond better to higher populations due to higher stress tolerance
- Optimum plant populations is wider in current hybrids
 - Plasticity

[©] D.J. Quinn, Purdue University

Why are Variable Seed Rate Prescriptions Challenging?

- Corn hybrids today obtain higher yields at higher plant populations (but also tolerate lower populations better, wider AOSR range)
 - Can we realize benefits outside of "extremes"
- Management zones (who, what, where?)
 - Spatially variable in the field, positionally stable over time
 - Ex: Variable rate P, K, and Lime vs. Variable rate N
- Factor influence on optimum seeding rate (can I predict this?)
 - Stand establishment (planter, soil conditions, weather, pests)
 - In-season precipitation timing and amount
- Available data to back up the developed prescription?
 - Yield Response x Seed Rate (AOSR) within different in-field zones.

Factors to First Consider with Spatial Seeding Rate Responses

- Spatially variable in the field, positionally stable over time
- Soil Type
- Soil Organic Matter
- Soil Electrical Conductivity
- Elevation and Slope
- Historical Yield Variability
- Combinations of above

Snapshot of Preliminary Results

- Agronomic Optimum Seeding Rate (AOSR) does differ spatially across fields
 - Soil type, drainage, slope, etc.
 - Well-drained Silt Loams Highest AOSR (>38K seeds/ac)
 - Well-Drained Sandy Loams Lowest AOSR (<30K seeds/ac)
 - Poorly-Drained Silt and Clay Loams In the Middle (31 35K seeds/ac)
- Plant Stand Conclusions (70+ Seed rate Trials, 2008 2019)
 - Good capacity to hold water, and high soil productivity >30K final stand
 - Poor capacity to hold water, and lower soil productivity -mid 20K final stand
- One shoesize does not fit all
 - Just because one assumption holds true in one location/field, doesn't mean it holds true in others.
 - Importance of localized data to evaluate and build variable rate prescriptions
 - Remember this for all agronomic management...

Does planting multiple hybrids pay off?

Take home points

- Michigan weather is changing over time (warmer & wetter)
- Sound agronomic knowledge of the crop is critical for maximizing yield (and profits)
- Timely planting is critical, corn prefers stand uniformity (soybean can tolerate marginal field conditions/stand better than corn)
- Diversify hybrid maturities (use long RMs for early planting)
- Short corn hybrids have greater optimal seeding rate and yield potential under narrow rows. Managing ear height is key
- Variable rate seeding has the potential to improve profits, building prescriptions can be a challenge

Thanks!

Questions?

MSU/Purdue Technicians, grad/undergrad students

Extension

MICHIGAN STATE

UNIVERSIT

Manni Singh msingh@msu.edu 517-353-0226

agronomy.msu.edu

Dan Quinn djquinn@purdue.edu 765-494-524

thekernel.info

Seed companies

Corn Agronomy